當狡辯面對科學——搜狐網(wǎng)中醫(yī)存廢辯論觀后感
作者:七是
今天下午(2012年8月31日)觀看了搜狐網(wǎng)“關于中醫(yī)存廢的微博辯論”,由于雙方陣容實力極端不對稱,使力挺中醫(yī)團體答辯詞不是被方舟子們逐一駁斥,就是因為說話實在無厘頭而被網(wǎng)友嘲笑。但其中有一個答辯詞大家可能都忽略了:論及經(jīng)絡是否存在時正方提出:“現(xiàn)代科學沒有檢驗到并不代表它不存在!(大意)言下之意是:“現(xiàn)在沒發(fā)現(xiàn)不等于以后不能發(fā)現(xiàn)。”很多人愛用“一切皆有可能”做類似言論的總結。這類言論在很多類似辯論中也能看到。
一、辯論中該做怎樣的陳述邏輯里面有個“排中律”,即一個陳述要么是真,要么是假,不存在其它狀態(tài)。滿足排中律的陳述我們稱它是確定性的。不滿足排中律的陳述稱為不確定性的。辯論陳述一定是確定性陳述,否則無法判斷對、錯。當然,日常生活中(例如和家人)說話時可以用不確定性陳述。
在辯論中應用不確定性陳述無異于耍無賴,因為它不能被證明也不能被證否。如上例:“現(xiàn)代科學沒有檢驗到并不代表它不存在。(或許以后它能被科學證明,這樣的事例屢見不鮮)”;如果我要回答:“現(xiàn)代科學連物質波(電子的波動性)都能檢驗,難道還不能檢驗經(jīng)絡是否存在?”如果你面對的是“有科學概念的人”時,這很有說服力。但是當你面對的是“中醫(yī)信仰者(這是一種很樸素的信仰)”呢?恐怕就沒有什么說服力了。如果你明確指出:“這個陳述是非法陳述,陳述本身不能成立,它不能證明也不能證否。如果我要反過來陳述:現(xiàn)代科學沒有檢驗到經(jīng)絡,就可以認為它真的就不存在。你如何反駁我?”是不是更有力呢?當然對于信仰者來說即使你駁的他啞口無言他也未必心里服氣,他們是一幫“思維固化”的人。但對第三方旁觀者的說服力就大大的不同了。
, 百拇醫(yī)藥
某次我和某人探討問題,談到亞當·斯密的《國富論》提出的自由市場經(jīng)濟對重塑現(xiàn)代社會心理是否重要時說:“斯密沒什么了不起,他的理論(我后來發(fā)現(xiàn)此人并不知道斯密的《國富論》到底說的什么)即使他不提出來,別人也會提出!(大意)我立即回了一句:“你這是陳述命題嗎?你還不如說:即使牛頓不建立萬有引力理論,馬頓也會建立。這種陳述有意義嗎?”
另外,不確定性陳述未必都不合法。例如,方舟子某次參加天文愛好者沙龍時說(大意):“現(xiàn)代科學還沒有證據(jù)證明存在外星人,但我傾向于相信外星人存在……”這就是個不確定陳述,請注意后面:“……因為太陽是很平凡的,宇宙中存在很多類似于太陽的恒星,如果他們中的某些能具有類似地球的行星,又有有利于生命的環(huán)境,我們就有理由認為外星智慧生物是很可能存在的。”與狡辯不同,這個陳述是建立在隨機事件概率基礎上的陳述,我們知道概率的另一個理解是“置信度”,方舟子意思是說:“存在外星智慧的可能性置信度比較高!
二、謹防數(shù)學流氓數(shù)學流氓不是說“數(shù)學家里的流氓”,而是指的是那些對數(shù)學概念一知半解,甚至用道聽途說的數(shù)學“理論”進行狡辯的人。這類人最經(jīng)常祭起的法寶是“哥德爾不完備性定理”和“策梅洛-弗蘭克集合論”。他們認為,根據(jù)以上理論,排中律在數(shù)學上是錯誤的,所以從根本上否定了排中律在科學陳述中的合法性。
, 百拇醫(yī)藥
在一次鳳凰衛(wèi)視關于“偽科學”的辯論中面對“北大教授”丁小平的類似發(fā)難,清華大學物理學教授趙南元義正詞嚴的說:“科學不討論無窮和永遠的問題,那是哲學家的事!
對!科學說的是現(xiàn)實世界!而現(xiàn)實世界事務即使再龐大也是有限的。而“哥德爾不完備性定理”和“策梅洛-弗蘭克集合論”涉及的是數(shù)學家感興趣的“無窮”。——對待“無窮”的態(tài)度也是“數(shù)學不是科學”的看法的依據(jù)。
我們這里以用對圓周率π的幾個陳述來說明一下:(以下均為十進制)
1、π(3.1415926……)的第1001000位的數(shù)是7。
這個陳述以現(xiàn)在數(shù)學家的能力是無法做出“真”、“假”判斷的,他們一般只能說:“因為π是一個正常數(shù)(雖然還沒有嚴格證明),所以是7的可能性是1/10!
, 百拇醫(yī)藥 有人可能會覺得茫然:“你們數(shù)學家一會說π是無理數(shù),一會說它是超越數(shù),無理和超越這兩個詞神經(jīng)病味很濃,現(xiàn)在又說它正常,這究竟是怎么回事呢?”
其實數(shù)學家沒瘋,這里說的“正常數(shù)”是指從0—9數(shù)字在π的無窮多位中使用率都一樣,并且出現(xiàn)任何n位特定數(shù)字串的漸進密度均為10-n。
當然,數(shù)學家總是令人討厭的(數(shù)學家的妻子或丈夫尤其這么認為),他們經(jīng)常用更嚴密的“數(shù)學表述”來嘲笑我們的智商。
因此,即使超出了人類能力我們也堅信“那個數(shù)要么是7,要么不是7,沒有其他!贝岁愂龊戏。
為什么我們這里要提出“人類能力”呢?這就是科學家的現(xiàn)實性。
布萊梅曼(H.Bremermann)極限(1962年證明):任何數(shù)據(jù)處理系統(tǒng)(不管是人造的還是活性的),平均每克所處理的數(shù)據(jù)不可能超過2×1047比特/秒。這意味著像地球尺寸這么大的超級計算機(約6×1027克,存在1010年),最多只能處理2.56×2092比特的數(shù)據(jù)。
, 百拇醫(yī)藥
即使是“天文數(shù)字”也不能叫無窮”,但計算1001000位甚至超出了“宇宙尺寸”的能力了!如果你不信,我無非是在次方上多加些0而已。
2、π從某一位起包含連續(xù)1001000個7。
與一般人認為不同,這個問題對數(shù)學家來說反到簡單了。實際上只要證明“π是一個正常數(shù)!本湍芘袆e這個命題的真假。
但是,“哥德爾不完備性定理”和“策梅洛-弗蘭克集合論”告訴你“π是一個正常數(shù)。”可能“既不能證明也不能證否。(不滿足排中律)”那么好了,2陳述可能是個非法陳述!
用數(shù)學定理來陳述科學問題時如果碰到“無窮”一定要小心!以免落入陷阱。數(shù)學家分為“應用數(shù)學家”和“純數(shù)學家”,應用數(shù)學家之所以對“無窮”感興趣其中一個原因就是“相同問題如果無窮都被證明了那么科學的有限就不在話下了!
數(shù)學和科學不可調和處在于“理想”與“現(xiàn)實”的距離。正如愛因斯坦所說:“數(shù)學定律一旦要說到現(xiàn)實,它們就是不確定的;而為了保持自己的確定性,它們一定不能說到現(xiàn)實!
關于中醫(yī)問題的辯論,當然不是數(shù)學理想,而是社會現(xiàn)實,所以,使用確定性陳述是最基本的原則。
2012、8、31, 百拇醫(yī)藥
今天下午(2012年8月31日)觀看了搜狐網(wǎng)“關于中醫(yī)存廢的微博辯論”,由于雙方陣容實力極端不對稱,使力挺中醫(yī)團體答辯詞不是被方舟子們逐一駁斥,就是因為說話實在無厘頭而被網(wǎng)友嘲笑。但其中有一個答辯詞大家可能都忽略了:論及經(jīng)絡是否存在時正方提出:“現(xiàn)代科學沒有檢驗到并不代表它不存在!(大意)言下之意是:“現(xiàn)在沒發(fā)現(xiàn)不等于以后不能發(fā)現(xiàn)。”很多人愛用“一切皆有可能”做類似言論的總結。這類言論在很多類似辯論中也能看到。
一、辯論中該做怎樣的陳述邏輯里面有個“排中律”,即一個陳述要么是真,要么是假,不存在其它狀態(tài)。滿足排中律的陳述我們稱它是確定性的。不滿足排中律的陳述稱為不確定性的。辯論陳述一定是確定性陳述,否則無法判斷對、錯。當然,日常生活中(例如和家人)說話時可以用不確定性陳述。
在辯論中應用不確定性陳述無異于耍無賴,因為它不能被證明也不能被證否。如上例:“現(xiàn)代科學沒有檢驗到并不代表它不存在。(或許以后它能被科學證明,這樣的事例屢見不鮮)”;如果我要回答:“現(xiàn)代科學連物質波(電子的波動性)都能檢驗,難道還不能檢驗經(jīng)絡是否存在?”如果你面對的是“有科學概念的人”時,這很有說服力。但是當你面對的是“中醫(yī)信仰者(這是一種很樸素的信仰)”呢?恐怕就沒有什么說服力了。如果你明確指出:“這個陳述是非法陳述,陳述本身不能成立,它不能證明也不能證否。如果我要反過來陳述:現(xiàn)代科學沒有檢驗到經(jīng)絡,就可以認為它真的就不存在。你如何反駁我?”是不是更有力呢?當然對于信仰者來說即使你駁的他啞口無言他也未必心里服氣,他們是一幫“思維固化”的人。但對第三方旁觀者的說服力就大大的不同了。
, 百拇醫(yī)藥
某次我和某人探討問題,談到亞當·斯密的《國富論》提出的自由市場經(jīng)濟對重塑現(xiàn)代社會心理是否重要時說:“斯密沒什么了不起,他的理論(我后來發(fā)現(xiàn)此人并不知道斯密的《國富論》到底說的什么)即使他不提出來,別人也會提出!(大意)我立即回了一句:“你這是陳述命題嗎?你還不如說:即使牛頓不建立萬有引力理論,馬頓也會建立。這種陳述有意義嗎?”
另外,不確定性陳述未必都不合法。例如,方舟子某次參加天文愛好者沙龍時說(大意):“現(xiàn)代科學還沒有證據(jù)證明存在外星人,但我傾向于相信外星人存在……”這就是個不確定陳述,請注意后面:“……因為太陽是很平凡的,宇宙中存在很多類似于太陽的恒星,如果他們中的某些能具有類似地球的行星,又有有利于生命的環(huán)境,我們就有理由認為外星智慧生物是很可能存在的。”與狡辯不同,這個陳述是建立在隨機事件概率基礎上的陳述,我們知道概率的另一個理解是“置信度”,方舟子意思是說:“存在外星智慧的可能性置信度比較高!
二、謹防數(shù)學流氓數(shù)學流氓不是說“數(shù)學家里的流氓”,而是指的是那些對數(shù)學概念一知半解,甚至用道聽途說的數(shù)學“理論”進行狡辯的人。這類人最經(jīng)常祭起的法寶是“哥德爾不完備性定理”和“策梅洛-弗蘭克集合論”。他們認為,根據(jù)以上理論,排中律在數(shù)學上是錯誤的,所以從根本上否定了排中律在科學陳述中的合法性。
, 百拇醫(yī)藥
在一次鳳凰衛(wèi)視關于“偽科學”的辯論中面對“北大教授”丁小平的類似發(fā)難,清華大學物理學教授趙南元義正詞嚴的說:“科學不討論無窮和永遠的問題,那是哲學家的事!
對!科學說的是現(xiàn)實世界!而現(xiàn)實世界事務即使再龐大也是有限的。而“哥德爾不完備性定理”和“策梅洛-弗蘭克集合論”涉及的是數(shù)學家感興趣的“無窮”。——對待“無窮”的態(tài)度也是“數(shù)學不是科學”的看法的依據(jù)。
我們這里以用對圓周率π的幾個陳述來說明一下:(以下均為十進制)
1、π(3.1415926……)的第1001000位的數(shù)是7。
這個陳述以現(xiàn)在數(shù)學家的能力是無法做出“真”、“假”判斷的,他們一般只能說:“因為π是一個正常數(shù)(雖然還沒有嚴格證明),所以是7的可能性是1/10!
, 百拇醫(yī)藥 有人可能會覺得茫然:“你們數(shù)學家一會說π是無理數(shù),一會說它是超越數(shù),無理和超越這兩個詞神經(jīng)病味很濃,現(xiàn)在又說它正常,這究竟是怎么回事呢?”
其實數(shù)學家沒瘋,這里說的“正常數(shù)”是指從0—9數(shù)字在π的無窮多位中使用率都一樣,并且出現(xiàn)任何n位特定數(shù)字串的漸進密度均為10-n。
當然,數(shù)學家總是令人討厭的(數(shù)學家的妻子或丈夫尤其這么認為),他們經(jīng)常用更嚴密的“數(shù)學表述”來嘲笑我們的智商。
因此,即使超出了人類能力我們也堅信“那個數(shù)要么是7,要么不是7,沒有其他!贝岁愂龊戏。
為什么我們這里要提出“人類能力”呢?這就是科學家的現(xiàn)實性。
布萊梅曼(H.Bremermann)極限(1962年證明):任何數(shù)據(jù)處理系統(tǒng)(不管是人造的還是活性的),平均每克所處理的數(shù)據(jù)不可能超過2×1047比特/秒。這意味著像地球尺寸這么大的超級計算機(約6×1027克,存在1010年),最多只能處理2.56×2092比特的數(shù)據(jù)。
, 百拇醫(yī)藥
即使是“天文數(shù)字”也不能叫無窮”,但計算1001000位甚至超出了“宇宙尺寸”的能力了!如果你不信,我無非是在次方上多加些0而已。
2、π從某一位起包含連續(xù)1001000個7。
與一般人認為不同,這個問題對數(shù)學家來說反到簡單了。實際上只要證明“π是一個正常數(shù)!本湍芘袆e這個命題的真假。
但是,“哥德爾不完備性定理”和“策梅洛-弗蘭克集合論”告訴你“π是一個正常數(shù)。”可能“既不能證明也不能證否。(不滿足排中律)”那么好了,2陳述可能是個非法陳述!
用數(shù)學定理來陳述科學問題時如果碰到“無窮”一定要小心!以免落入陷阱。數(shù)學家分為“應用數(shù)學家”和“純數(shù)學家”,應用數(shù)學家之所以對“無窮”感興趣其中一個原因就是“相同問題如果無窮都被證明了那么科學的有限就不在話下了!
數(shù)學和科學不可調和處在于“理想”與“現(xiàn)實”的距離。正如愛因斯坦所說:“數(shù)學定律一旦要說到現(xiàn)實,它們就是不確定的;而為了保持自己的確定性,它們一定不能說到現(xiàn)實!
關于中醫(yī)問題的辯論,當然不是數(shù)學理想,而是社會現(xiàn)實,所以,使用確定性陳述是最基本的原則。
2012、8、31, 百拇醫(yī)藥
百拇醫(yī)藥網(wǎng) http://www.www.srpcoatings.com/html/201209/0136/3818.htm